来自郭滨的问题
设函数f(x)=exe-ax2+(2a-1)x-a,其中e是自然对数的底数.(Ⅰ)若a=0,求曲线f(x)在x=1处的切线方程;(Ⅱ)若当x≥1时,f(x)≥0,求a的取值范围.
设函数f(x)=exe-ax2+(2a-1)x-a,其中e是自然对数的底数.
(Ⅰ)若a=0,求曲线f(x)在x=1处的切线方程;
(Ⅱ)若当x≥1时,f(x)≥0,求a的取值范围.


设函数f(x)=exe-ax2+(2a-1)x-a,其中e是自然对数的底数.(Ⅰ)若a=0,求曲线f(x)在x=1处的切线方程;(Ⅱ)若当x≥1时,f(x)≥0,求a的取值范围.
设函数f(x)=exe-ax2+(2a-1)x-a,其中e是自然对数的底数.
(Ⅰ)若a=0,求曲线f(x)在x=1处的切线方程;
(Ⅱ)若当x≥1时,f(x)≥0,求a的取值范围.
(Ⅰ)a=0时,f(x)=ex-1-x,则f′(x)=ex-1-1,故f′(1)=0,又f(1)=0,故切线方程是y=0;(Ⅱ)易知f′(x)=ex-1-2ax+2a-1,f″(x)=ex-1-2a,若f″(x)≥0,得a≤ex-12,即a≤12时,f′(x)在[1,+∞)...