来自蔡美富的问题
已知定义域为R的函数f(x)满足:①f(x+y)=f(x)•f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2).求证:(1)f(0)=1;(2)f(x)>0.
已知定义域为R的函数f(x)满足:
①f(x+y)=f(x)•f(y)对任何实数x、y都成立;
②存在实数x1、x2使,f(x1)≠f(x2).
求证:
(1)f(0)=1;
(2)f(x)>0.


已知定义域为R的函数f(x)满足:①f(x+y)=f(x)•f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2).求证:(1)f(0)=1;(2)f(x)>0.
已知定义域为R的函数f(x)满足:
①f(x+y)=f(x)•f(y)对任何实数x、y都成立;
②存在实数x1、x2使,f(x1)≠f(x2).
求证:
(1)f(0)=1;
(2)f(x)>0.
证明:(1)令x=y=0则f(0)=f2(0),∴f(0)=0或f(0)=1若f(0)=0则令y=0,即有f(x)=f(x)•f(0)=0对x∈R均成立,与②矛盾,故f(0)≠0,若f(0)=1,则f(x)=f(x)成立,∴f(0)=1;(2)将x,y均换...