来自范开钦的问题
【将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“】
将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为___.


【将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“】
将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为___.
根据题意,分析可得,“有效排列”的个数为5,
再求所有的排列的个数,即从6个位置中,任取3个放白球或黑球,故其数目为C63=20,
由等可能事件的概率,所求概率为520