来自杜歆的问题
【如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,(Ⅰ)证明:AC⊥A1B;(Ⅱ)求几何体C1DABA1的体积.】
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)求几何体C1DABA1的体积.


【如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,(Ⅰ)证明:AC⊥A1B;(Ⅱ)求几何体C1DABA1的体积.】
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)求几何体C1DABA1的体积.
证明:(Ⅰ)连接BD交AC于点O
∵四边形ABCD是正方形∴AC⊥BD
又∵AD1⊥平面ABCD,AC⊂平面ABCD
∴AC⊥A1D,A1D∩BD=D∴AC⊥平面A1BD,A1B⊂平面A1BD
∴AC⊥A1B…(5分)
(Ⅱ)V