来自孙玉琴的问题
设函数f(x)=∫x0sint2dtx3,x≠0a,x=0在x=0处连续,则a=1313.
设函数f(x)=
∫x
sint2dtx3,x≠0 a, x=0在x=0处连续,则a=13
13
.


设函数f(x)=∫x0sint2dtx3,x≠0a,x=0在x=0处连续,则a=1313.
设函数f(x)=
∫x
sint2dtx3,x≠0 a, x=0在x=0处连续,则a=13
13
.
∵limx→0f(x)=limx→0∫x
sint