来自桂现才的问题
求救:高中数学:线面垂直问题已知A是△BCD外一点,AB⊥平面BCD,角BCD=90°,AD与平面BCD成45°,AD与平面ABC成30°,求AC与平面ABD所成的角的大小
求救:高中数学:线面垂直问题
已知A是△BCD外一点,AB⊥平面BCD,角BCD=90°,AD与平面BCD成45°,AD与平面ABC成30°,求AC与平面ABD所成的角的大小


求救:高中数学:线面垂直问题已知A是△BCD外一点,AB⊥平面BCD,角BCD=90°,AD与平面BCD成45°,AD与平面ABC成30°,求AC与平面ABD所成的角的大小
求救:高中数学:线面垂直问题
已知A是△BCD外一点,AB⊥平面BCD,角BCD=90°,AD与平面BCD成45°,AD与平面ABC成30°,求AC与平面ABD所成的角的大小
因为AB⊥平面BCD,角BCD=90°,所以AB⊥CD,BC⊥CD,又AB交BC于点B,所以CD⊥平面BCD,所以∠CAD=30度,∠ADB=45度,由题可知△ABD为等腰直角三角形,设AB=1,则BD=1,AD=√2,CD=√2/2,AC=√6/2.过点C作CE⊥BD,连接AE,则∠CAE为...