来自刘清成的问题
【已知椭圆的焦距为2,且过点.(1)求椭圆C的方程;(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.①当直线的倾斜角为时,求的长;②求的内切圆的面】
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.


【已知椭圆的焦距为2,且过点.(1)求椭圆C的方程;(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.①当直线的倾斜角为时,求的长;②求的内切圆的面】
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
(1)椭圆C的方程为;(2)(1)的长为;(2)当的内切圆的面积取最大值时直线的方程为.
试题分析:(1)由已知得,且,联立可求得椭圆方程;
(2)(1)联立椭圆与直线方程,由弦长公式可直接求出的长;(2)设直线的方程为,与椭圆方程联立消去,得,而;
利用均值不等式和函数单调性的性质可得当时,有最大值3,这时的内切圆面积的最大值为,直线的方程为.
试题解析:(1)由已知,得,且,解得,
故椭圆C的方程为; 4分
(2)①由,消去得, 6分
则; 9分
②设直线的方程为,由,得,显然,
设,则有,
设的内切圆半径为,由