来自卢艳玲的问题
设函数f(x)=|x-a|-ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥-2恒成立,求实数a的取值范围.
设函数f(x)=|x-a|-ax,其中a为大于零的常数.
(1)解不等式:f(x)<0;
(2)若0≤x≤2时,不等式f(x)≥-2恒成立,求实数a的取值范围.


设函数f(x)=|x-a|-ax,其中a为大于零的常数.(1)解不等式:f(x)<0;(2)若0≤x≤2时,不等式f(x)≥-2恒成立,求实数a的取值范围.
设函数f(x)=|x-a|-ax,其中a为大于零的常数.
(1)解不等式:f(x)<0;
(2)若0≤x≤2时,不等式f(x)≥-2恒成立,求实数a的取值范围.
(1)不等式即为|x-a|<ax,
若x≤0,则ax≤0,故不等式不成立;
若x>0,不等式化为(x-a)2<a2x2,即[(1+a)x-a][(1-a)x-a]<0,
∴当a>1时,x>a1+a