来自栗文青的问题
在△ABC中,已知a、b、c分别是角A、B、C的对边,不等式x2cosC+4xsinC+6≥0对一切实数x恒成立.(1)求角C的最大值;(2)若角C取得最大值,且a=2b,求角B的大小.
在△ABC中,已知a、b、c分别是角A、B、C的对边,不等式x2cosC+4xsinC+6≥0对一切实数x恒成立.
(1)求角C的最大值;
(2)若角C取得最大值,且a=2b,求角B的大小.


在△ABC中,已知a、b、c分别是角A、B、C的对边,不等式x2cosC+4xsinC+6≥0对一切实数x恒成立.(1)求角C的最大值;(2)若角C取得最大值,且a=2b,求角B的大小.
在△ABC中,已知a、b、c分别是角A、B、C的对边,不等式x2cosC+4xsinC+6≥0对一切实数x恒成立.
(1)求角C的最大值;
(2)若角C取得最大值,且a=2b,求角B的大小.
(1)易知cosC=0不满足条件,因此cosC≠0,
由不等式x2cosC+4xsinC+6≥0对一切实数x恒成立,
∴△=16sin2C-24cosC≤0,cosC>0,化为2cos2C+3cosC-2≥0,
解得cosC≥12