来自姜金刚的问题
a,b,c,d为正实数,求证:((a^2+b^2+c^2+d^2)/4)^(1/2)≥((abc+bcd+abd+acd)/4)^(1/3)大概是用均值不等式吧.
a,b,c,d为正实数,求证:((a^2+b^2+c^2+d^2)/4)^(1/2)≥((abc+bcd+abd+acd)/4)^(1/3)
大概是用均值不等式吧.


a,b,c,d为正实数,求证:((a^2+b^2+c^2+d^2)/4)^(1/2)≥((abc+bcd+abd+acd)/4)^(1/3)大概是用均值不等式吧.
a,b,c,d为正实数,求证:((a^2+b^2+c^2+d^2)/4)^(1/2)≥((abc+bcd+abd+acd)/4)^(1/3)
大概是用均值不等式吧.
就是要证明(a^2+b^2+c^2+d^2)^3>=4(abc+bcd+abd+acd)^2
右边=(4bc(a+d)+4ad(b+c))^2/4