求对数的推导公式的推导过程答满意再加一百大虾们高一数学的对数-查字典问答网
分类选择

来自李哲林的问题

  求对数的推导公式的推导过程答满意再加一百大虾们高一数学的对数的推导公式的推导过程什么来历有什么用途

  求对数的推导公式的推导过程答满意再加一百

  大虾们

  高一数学的对数的推导公式的推导过程

  什么来历有什么用途

1回答
2020-04-2612:29
我要回答
提示:回答问题需要登录哦!
黄晓霖

  用^表示乘方,用log(a)(b)表示以a为底,b的对数

  *表示乘号,/表示除号

  定义式:

  若a^n=b(a>0且a≠1)

  则n=log(a)(b)

  基本性质:

  1.a^(log(a)(b))=b

  2.log(a)(MN)=log(a)(M)+log(a)(N);

  3.log(a)(M/N)=log(a)(M)-log(a)(N);

  4.log(a)(M^n)=nlog(a)(M)

  推导

  1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

  2.

  MN=M*N

  由基本性质1(换掉M和N)

  a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]

  由指数的性质

  a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(MN)=log(a)(M)+log(a)(N)

  3.与2类似处理

  MN=M/N

  由基本性质1(换掉M和N)

  a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]

  由指数的性质

  a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(M/N)=log(a)(M)-log(a)(N)

  4.与2类似处理

  M^n=M^n

  由基本性质1(换掉M)

  a^[log(a)(M^n)]={a^[log(a)(M)]}^n

  由指数的性质

  a^[log(a)(M^n)]=a^{[log(a)(M)]*n}

  又因为指数函数是单调函数,所以

  log(a)(M^n)=nlog(a)(M)

  其他性质:

  性质一:换底公式

  log(a)(N)=log(b)(N)/log(b)(a)

  推导如下

  N=a^[log(a)(N)]

  a=b^[log(b)(a)]

  综合两式可得

  N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

  又因为N=b^[log(b)(N)]

  所以

  b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

  所以

  log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}

  所以log(a)(N)=log(b)(N)/log(b)(a)

  性质二:(不知道什么名字)

  log(a^n)(b^m)=m/n*[log(a)(b)]

  推导如下

  由换底公式[lnx是log(e)(x),e称作自然对数的底]

  log(a^n)(b^m)=ln(a^n)/ln(b^n)

  由基本性质4可得

  log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}

  再由换底公式

  log(a^n)(b^m)=m/n*[log(a)(b)]

  累死了……

2020-04-26 12:30:34
大家都在问
最新问答