来自陆维文的问题
已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
已知函数f(x)=x3-3ax-1,a≠0
(1)求f(x)的单调区间;
(2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.


已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
已知函数f(x)=x3-3ax-1,a≠0
(1)求f(x)的单调区间;
(2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
【答案】(1)由题知:f'(x)=3x2-3a=3(x2-a),
①当a<0时,对∀x∈R,恒有f'(x)>0,
即当a<0时,f(x)的单调递增区间为(-∞,+∞).
②当a>0时,
解f'(x)>0得,x>
a或x<−
a