来自金懿的问题
已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为___.
已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为___.


已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为___.
已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为___.
构造函数g(x)=ex•f(x),
则g′(x)=[ex•f(x)]′=ex•f′(x)+ex•f(x)=ex•[f(x)+f′(x)],
∵f(x)+f′(x)<0,
∴g′(x)<0,
即g(x)在(-∞,0)上为减函数,
由不等式ex+2019f(x+2015)<f(-4),
得:ex+2015•f(x+2015)<e-4•f(-4),
即g(x+2015)<g(-4),
则-4<x+2015<0,得-2019<x<-2015.
即不等式ex+2019f(x+2015)<f(-4)的解集为:{x|-2019<x<-2015}.
故答案为:{x|-2019<x<-2015}.