来自陆玉珍的问题
高中数学不等式设x1、x2、x3都是正数,且x1+x2+x3=1,求证x1/根号(1-x1)+x2/根号(1-x2)+x3/根号(1-x3)≥(根号x1+根号x2+根号x3)/根号2
高中数学不等式
设x1、x2、x3都是正数,且x1+x2+x3=1,求证x1/根号(1-x1)+x2/根号(1-x2)+x3/根号(1-x3)≥(根号x1+根号x2+根号x3)/根号2


高中数学不等式设x1、x2、x3都是正数,且x1+x2+x3=1,求证x1/根号(1-x1)+x2/根号(1-x2)+x3/根号(1-x3)≥(根号x1+根号x2+根号x3)/根号2
高中数学不等式
设x1、x2、x3都是正数,且x1+x2+x3=1,求证x1/根号(1-x1)+x2/根号(1-x2)+x3/根号(1-x3)≥(根号x1+根号x2+根号x3)/根号2
柯西不等式(均值定理),
因为:a1a2a3都是正数,b1b2b3都是正数,
则有:根号(a1+a2+a3)x根号(b1+b2+b3)≥根号(a1b1+a2b2+a3b3),
当且仅当a1/b1=a2/b2=a3/b3时,取等号,
由题意得:
根号2=根号((1-x1)+(1-x2)+(1-x3)),
x1/根号(1-x1)+x2/根号(1-x2)+x3/根号(1-x3)x根号2≥(根号x1+根号x2+根号x3)
补充:a1b1+a2b2+…+anbn≤√(a1^2+a2^2+…+an^2)×√(b1^2+b2^2+…+bn^2)