来自潘皖印的问题
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围。


已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围。
(1);(2)
分析:
(1)把抛物线上的两点代入解析式,解方程组可求b、c的值;(2)令y=0,求抛物线与x轴的两交点坐标,观察图象,求y>0时,x的取值范围.(1)将点(-1,0),(0,3)代入中,得,解得∴;(2)令,则,解得,∵抛物线开口向下,∴当-1<x<3时,y>0.
考点:
待定系数法求函数关系式,二次函数的性质
点评:
二次函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.