来自刘通学的问题
已知抛物线的顶点为椭圆x2a2+y2b2=1(a>b>0)的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点M(23,-263),求抛物线与椭圆的方程.
已知抛物线的顶点为椭圆x2a2+y2b2=1(a>b>0)的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点M(23,-2
63),求抛物线与椭圆的方程.


已知抛物线的顶点为椭圆x2a2+y2b2=1(a>b>0)的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点M(23,-263),求抛物线与椭圆的方程.
已知抛物线的顶点为椭圆x2a2+y2b2=1(a>b>0)的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行.又抛物线与椭圆交于点M(23,-2
63),求抛物线与椭圆的方程.
由题意,设抛物线的方程为y2=2px(p>0),则
将M(23,-2
63)