来自郭斯淦的问题
如图,在△ABC中,∠ACB=90゜,P为AC上一点,PQ⊥AB于Q,AM⊥AB交BP的延长线于M,MN⊥AC于N,AQ=MN.(1)求证:AP=AM;(2)求证:PC=AN.
如图,在△ABC中,∠ACB=90゜,P为AC上一点,PQ⊥AB于Q,AM⊥AB交BP的延长线于M,MN⊥AC于N,AQ=MN.
(1)求证:AP=AM;
(2)求证:PC=AN.


如图,在△ABC中,∠ACB=90゜,P为AC上一点,PQ⊥AB于Q,AM⊥AB交BP的延长线于M,MN⊥AC于N,AQ=MN.(1)求证:AP=AM;(2)求证:PC=AN.
如图,在△ABC中,∠ACB=90゜,P为AC上一点,PQ⊥AB于Q,AM⊥AB交BP的延长线于M,MN⊥AC于N,AQ=MN.
(1)求证:AP=AM;
(2)求证:PC=AN.
证明:(1)∵BA⊥AM,MN⊥AC,
∴∠BAM=∠ANM=90°,
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,
∴∠PAQ=∠AMN,
∵PQ⊥AB MN⊥AC,
∴∠PQA=∠ANM=90°,
∴在△PQA与△ANM中,
∠PAQ=∠AMNAQ=MN∠AQP=∠ANM