导数里面的“尖点”和“拐点”是什么意思?-查字典问答网
分类选择

来自胡克的问题

  导数里面的“尖点”和“拐点”是什么意思?

  导数里面的“尖点”和“拐点”是什么意思?

4回答
2020-03-1908:44
我要回答
提示:回答问题需要登录哦!
刘胜道

  "尖点",一般指函数在该点连续,左右导数都存在但不相等的点,是"不可导"点,

  例如y=|x|,在x=0这一点.

  “拐点”,是指曲线凹凸的分界点,在该点函数连续,二阶可导,二阶导数等于0.

2020-03-19 08:46:10
刘胜道

  左导数是-1,右导数是1,左右导数不相等,故不可导。

  这是最简单最典型的例子,教科书上都有,老师都讲,怎么还会这样认为呢?

  再说,取最小值也不一定可导啊?

2020-03-19 08:49:48
刘胜道

  你是专科?本科不可能不讲啊?

  二阶导数是未学到,还是不讲?不可能不讲啊?

  函数可导的定义是:左右导数都存在,并且相等!

  拐点处一阶导数不一定等于0!

  (可能为0,例y=x^3;可能不为0,例y=x^3-3x^2)

2020-03-19 08:53:21
刘胜道

  你的概念不清楚,建议先仔细看看教科书。

  一阶导数等于0,得出的是“驻点”,是“可疑极值点”,是否极值再判断!

  二阶导数等于0,得出的才可能是“拐点”,也要进一步判断。

  拐点是曲线向下凹与向上凸的分界点,与极值无关。

  二次函数的顶点是极值点,也是最值点。

  二次函数要么开口向上(向下凹),要么开口向下(向上凸),顶点不是分界点,自然不是拐点!

  可导与连续有关但不同。

  连续:左极限=右极限=该点函数值,图像在所讨论的区间上无间断点。

  可导:左导数=右导数,图像在该点有切线。

  可导的函数必连续,但连续的函数不一定可导。

  典型例子就是y=|x|,在x=0点连续,但不可导

2020-03-19 08:57:03
大家都在问
最新问答