来自崔法毅的问题
已知函数f(x)=x2-2lnx,h(x)=x2-x+a.(Ⅰ)求函数f(x)的极值;(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
已知函数f(x)=x2-2lnx,h(x)=x2-x+a.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.


已知函数f(x)=x2-2lnx,h(x)=x2-x+a.(Ⅰ)求函数f(x)的极值;(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
已知函数f(x)=x2-2lnx,h(x)=x2-x+a.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
(Ⅰ)∵f′(x)=2x−2x,令f′(x)=0,∵x>0∴x=所以f(x)的极小值为1,无极大值.(7分)(Ⅱ)∵x(0,1)1(1,+∞)f′(x)_0+f(x)减1增k(x)=f(x)−h(x)=−2lnx+x...