来自阮伯如的问题
立体几何球中四点半径为r的球上有四个点A、B、C、D,其中AB、AC、AD两两垂直,求三角形ABC、三角形ACD、三角形ADB面积和的最小值
立体几何球中四点
半径为r的球上有四个点A、B、C、D,其中AB、AC、AD两两垂直,求三角形ABC、三角形ACD、三角形ADB面积和的最小值


立体几何球中四点半径为r的球上有四个点A、B、C、D,其中AB、AC、AD两两垂直,求三角形ABC、三角形ACD、三角形ADB面积和的最小值
立体几何球中四点
半径为r的球上有四个点A、B、C、D,其中AB、AC、AD两两垂直,求三角形ABC、三角形ACD、三角形ADB面积和的最小值
可以将图形补成一个立方体,易证该立方体内接于球.因此,满足:AB^2+AC^2+AD^2=4r^2面积之和为1/2(AB*AC+AB*AD+AC*AD),由不等式知识易知,当AB=AC=AD时面积最大,而此时各边长度满足AB^2=AC^2=AD^2=4/3r^2.因此面积之和...