来自程春田的问题
椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF2│=14/3,PF1⊥F1F2,求椭圆C的方程.
椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF2│=14/3,PF1⊥F1F2,求椭圆C的方程.


椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF2│=14/3,PF1⊥F1F2,求椭圆C的方程.
椭圆X^2/a^2+Y^2/b^2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且│PF1│=4/3,│PF2│=14/3,PF1⊥F1F2,求椭圆C的方程.
│PF1│+│PF2│=2a所以2a=6a=3
PF1⊥F1F2所以(2C)^2+(4/3)^2=(14/3)^2
C^2=45/9
a^2=b^2+c^2
b^2=4
所以方程是X^2/9+Y^2/4=1