来自罗岱的问题
【已知角A、角B和角C是三角形ABC的内角,求证求证:tan2/A*tan2/B+tan2/B*tan2/C+tan2/C*tan2/A=1】
已知角A、角B和角C是三角形ABC的内角,求证
求证:tan2/A*tan2/B+tan2/B*tan2/C+tan2/C*tan2/A=1


【已知角A、角B和角C是三角形ABC的内角,求证求证:tan2/A*tan2/B+tan2/B*tan2/C+tan2/C*tan2/A=1】
已知角A、角B和角C是三角形ABC的内角,求证
求证:tan2/A*tan2/B+tan2/B*tan2/C+tan2/C*tan2/A=1
原式=tan(A/2)*[tan(B/2)+tan(C/2)]+tan(B/2)*tan(C/2)
=tan(A/2)*[tan(B+C)/2]*[1-tan(B/2)*tan(C/2)]+tan(B/2)*tan(C/2)
其中:应用公式:tanα+tanβ=tan(α+β)*(1-tanα*tanβ)
=tan(A/2)*cot(A/2)[1-tan(B/2)*tan(C/2)]+tan(B/2)*tan(C/2)
=1