来自申步君的问题
【已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?】
已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?


【已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?】
已知二次函数y=f(x)的二次项系数为负,对任意x∈R恒有f(3-x)=f(3+x),试问当f(2+2x-x2)与f(2-x-2x2)满足什么关系时才有-3<x<0?
解;由题意得:对称轴x=3,又二次项系数为负,
∴函数y=f(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,
∵2+2x-x2=3-(x-1)2≤3,2-x-2x2=178