来自惠鏸的问题
【怎样理解连续型随机变量的分布函数“右连续性”?我的理解是这样的:若已知连续型随机变量的分布函数F(x)的表达式(此时定义域未知)和F(x1)的值(x1在其定义域内),那么我觉得对于任意】
怎样理解连续型随机变量的分布函数“右连续性”?我的理解是这样的:若已知连续型随机变量的分布函数F(x)的表达式(此时定义域未知)和F(x1)的值(x1在其定义域内),那么我觉得对于任意的x2


【怎样理解连续型随机变量的分布函数“右连续性”?我的理解是这样的:若已知连续型随机变量的分布函数F(x)的表达式(此时定义域未知)和F(x1)的值(x1在其定义域内),那么我觉得对于任意】
怎样理解连续型随机变量的分布函数“右连续性”?我的理解是这样的:若已知连续型随机变量的分布函数F(x)的表达式(此时定义域未知)和F(x1)的值(x1在其定义域内),那么我觉得对于任意的x2
那个不是那么理解的.右连续说的是任一点x0,它的F(x0+0)=F(x0)即是该点右极限等于该点函数值.这是显然的,因为F(x)是一个单调有界非降函数,所以其任一点x0的右极限必然存在,然后再证右极限和函数值即可.你去图书馆借本茆诗松的《概率论与数理统计》,那本书是统计专业本科生用的,讲的要详细些.另外,分布函数右连续的性质在那本书61页.