来自汪前进的问题
【已知abc是互不相等的非零实数,用反证法证明三个方程ax2加2bx加c等于0,bx2加2cx加b等于零,cx2加2ax加b等于零,至少有一个方程有两个相异实根】
已知abc是互不相等的非零实数,
用反证法证明三个方程ax2加2bx加c等于0,bx2加2cx加b等于零,cx2加2ax加b等于零,至少有一个方程有两个相异实根


【已知abc是互不相等的非零实数,用反证法证明三个方程ax2加2bx加c等于0,bx2加2cx加b等于零,cx2加2ax加b等于零,至少有一个方程有两个相异实根】
已知abc是互不相等的非零实数,
用反证法证明三个方程ax2加2bx加c等于0,bx2加2cx加b等于零,cx2加2ax加b等于零,至少有一个方程有两个相异实根
反证法的理论依据是原命题和逆否命题的真值相同,精髓便是:若结论不对,则条件将不对.具体看这道题反证法:先对结论取反,“至少有一个方程有两个相异实根”的对应否定命题应该为“三个方程都没有相异实根”即“三个方...