来自卢纯福的问题
已知数列{an}的通项公式为an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}的前100项中与数列{bn}中相同的项有()A.50项B.34项C.6项D.5项
已知数列{an}的通项公式为an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}的前100项中与数列{bn}中相同的项有()
A.50项
B.34项
C.6项
D.5项


已知数列{an}的通项公式为an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}的前100项中与数列{bn}中相同的项有()A.50项B.34项C.6项D.5项
已知数列{an}的通项公式为an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}的前100项中与数列{bn}中相同的项有()
A.50项
B.34项
C.6项
D.5项
{an}的前100项中,a1=6×1-4=2,a100=6×100-4=596,在598之内,有29=512最大.∵b1=2=a1,b2=4,∵6n-4=4,n=43∉N*,∴b2不是{an}中的项;b3=23=8,∵6n-4=8,n=2,∴b3=a2;b4=24=16,∵6n-4=16,∴n=103∉N...