来自邵世煌的问题
(理科)在△ABC中,角A、B、C的对边分别为a、b、c,若bcosC+(2a+c)cosB=0(1)求内角B的大小;(2)若b=2,求△ABC面积的最大值.
(理科)在△ABC中,角A、B、C的对边分别为a、b、c,若bcosC+(2a+c)cosB=0
(1)求内角B的大小;
(2)若b=2,求△ABC面积的最大值.


(理科)在△ABC中,角A、B、C的对边分别为a、b、c,若bcosC+(2a+c)cosB=0(1)求内角B的大小;(2)若b=2,求△ABC面积的最大值.
(理科)在△ABC中,角A、B、C的对边分别为a、b、c,若bcosC+(2a+c)cosB=0
(1)求内角B的大小;
(2)若b=2,求△ABC面积的最大值.
(1)利用正弦定理化简已知的等式得:sinBcosC+(2sinA+sinC)cosB=0,
整理得:sinBcosC+cosBsinC=-2sinAcosB,即sin(B+C)=sinA=-2sinAcosB,
∵A为三角形的内角,即sinA≠0,
∴cosB=-12