来自丛升日的问题
【若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()A.0<s<2B.S>1C.1<S<2D.-1<S<1】
若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()
A.0<s<2
B.S>1
C.1<S<2
D.-1<S<1


【若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()A.0<s<2B.S>1C.1<S<2D.-1<S<1】
若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()
A.0<s<2
B.S>1
C.1<S<2
D.-1<S<1
∵二次函数y=ax2+bx+c的顶点在第一象限,
且经过点(0,1),(-1,0),
∴易得:c=1,a-b+c=0,a<0,b>0,
由a=b-1<0得到b<1,结合上面b>0,所以0<b<1①,
由b=a+1>0得到a>-1,结合上面a<0,所以-1<a<0②,
∴由①②得:-1<a+b<1,且c=1,
得到0<a+b+c<2,
∴0<s<2.
故选A.