【1.已知a*x^3=b*y^3=c*z^3且1/x+1/y-查字典问答网
分类选择

来自沈兆勇的问题

  【1.已知a*x^3=b*y^3=c*z^3且1/x+1/y+1/z=1求证(a*x^2+b*y^2+c*z^2)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3){提示令a*x^3=b*y^3=c*z^3=T则a*x^2=T/Xb*y^2=T/Yc*z^2=T/Z}2.已知实数a,b满足a-3*a^(2/3)+5*a^(1/3)=5b-3*b^(2/3)+5*b^(1/3)=5求证a^(1/3)+b^】

  1.已知a*x^3=b*y^3=c*z^3且1/x+1/y+1/z=1求证(a*x^2+b*y^2+c*z^2)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3){提示令a*x^3=b*y^3=c*z^3=T则a*x^2=T/Xb*y^2=T/Yc*z^2=T/Z}

  2.已知实数a,b满足a-3*a^(2/3)+5*a^(1/3)=5b-3*b^(2/3)+5*b^(1/3)=5求证a^(1/3)+b^(1/3)=2

1回答
2020-01-2621:29
我要回答
提示:回答问题需要登录哦!
冯跃

  因为a*x^2=T/Xb*y^2=T/Yc*z^2=T/Z所以a*x^2+b*y^2+c*z^2=T/X+T/Y+T/Z=T*(1/x+1/y+1/z)=T所以(a*x^2+b*y^2+c*z^2)^(1/3)=T^(1/3)=x*a^(1/3)=y*b^(1/3)=z*c^(1/3)..(1)所以T^(1/3)=x*a^(1/3)/3+y*b^(1/3)/3+z*c^(1/3...

2020-01-26 21:31:43
大家都在问
最新问答