来自陆恒云的问题
a1=a,a2=r(r>0),且数列an*(an+1)是一个以q(q>0)为公比的等比数列.设bn=(a2n-1)+(a2n),Sn=b1+b2+b3+...bn,求bn及lim(1/Sn)
a1=a,a2=r(r>0),且数列an*(an+1)是一个以q(q>0)为公比的等比数列.设bn=(a2n-1)+(a2n),Sn=b1+b2+b3+...bn,求bn及lim(1/Sn)


a1=a,a2=r(r>0),且数列an*(an+1)是一个以q(q>0)为公比的等比数列.设bn=(a2n-1)+(a2n),Sn=b1+b2+b3+...bn,求bn及lim(1/Sn)
a1=a,a2=r(r>0),且数列an*(an+1)是一个以q(q>0)为公比的等比数列.设bn=(a2n-1)+(a2n),Sn=b1+b2+b3+...bn,求bn及lim(1/Sn)
an*(an+1)=ar*(q的n-1次方)一(an+1)*(an+2)=ar*(q的n次方)二二除一,得(an+2)/an=q;所以,n为奇数时,an=a*q;n为偶数时,an=r*q;所以bn=a*(q的n次方)+r*(q的n次方)=(a+r)*(q的n次方)Sn=(a+r)+(a+r)*...