来自刘泽强的问题
数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712
数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()
A.13
B.512
C.12
D.712


数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712
数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()
A.13
B.512
C.12
D.712
∵an•bn=1∴bn=1n2+3n+2=1(n+1)(n+2)∴s10=12×3+13×4+ + 110×11+111×12=(12-13)+(13−14) + +(110−111) +(111−112)=12-112=512故选项为B....