【因为cotx的原始函数是ln(sinx)+c,所以cot(-查字典问答网
分类选择

来自苏勤的问题

  【因为cotx的原始函数是ln(sinx)+c,所以cot(arcsinx)的原始函数是ln(sin(arcsinx))+c=lnx+c,微分后得1/x=cot(arcsinx),这是怎么回事】

  因为cotx的原始函数是ln(sinx)+c,所以cot(arcsinx)的原始函数是ln(sin(arcsinx))+c=lnx+c,微分

  后得1/x=cot(arcsinx),这是怎么回事

7回答
2020-12-2723:58
我要回答
提示:回答问题需要登录哦!
雷清泉

  你应该是求导时忘了还有arcsinx这个复合,得到的是1/x=cot(arcsinx)*(arcsinx)',而cot(arcsinx)=cos(arcsinx)/sin(arcsinx)=(1-sin(arcsinx)^2)^(1/2)/x=(1-x^2)^(1/2)/x

2020-12-28 00:00:52
苏勤

  我只是微分lnx+c,抵消了积分运算,和cot(arcsinx)没关系

2020-12-28 00:03:40
雷清泉

  微分ln(sin(arcsinx))得到的结果不就是cot(arcsinx)*(arcsinx)'吗?lnx微分没错是1/x

2020-12-28 00:05:36
苏勤

  我是把原始函数ln(sin(arcsinx))+c化为lnx+c后微分,所得结果应等于原函数cot(arcsinx),但等式两边不相等

2020-12-28 00:07:12
雷清泉

  抱歉,是我理解错误!不过你不能这样推理,比如1/x的原函数是lnx,但你就不能把x换成x^2,那不就变成1/(x^2)的原函数是2lnx吗?就像不能因为lnx微分得到1/x,就能推出ln(x^2)微分得到1/(x^2),这就是复合函数求导有链式法则的缘故。

2020-12-28 00:10:58
苏勤

  那cot(arcsinx)的原始函数应该怎么求

2020-12-28 00:14:17
雷清泉

  换元,令x=sint,则积分变成cott*d(sint)=cott*(cost)dt=(cost)^2/sintdt=(1-(sint)^2)/sintdt=(csct-sint)dt,csct原函数是-ln(csct+cott),再根据三角关系把cost、csct、cott化为x的形式

2020-12-28 00:19:09
大家都在问
最新问答