来自刘清君的问题
【如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.】
如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.


【如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.】
如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
△OMN是等腰直角三角形.
理由:连接OA.
∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,
∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);
∠B=∠C=45°;
在△OAN和OBM中,
AO=BO∠NAO=∠BAN=BM(已知)