来自陈仲怀的问题
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f″(η)+f′(η)=1.
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
(1)存在ξ∈(0,1),使得f′(ξ)=1;
(2)存在η∈(-1,1),使得f″(η)+f′(η)=1.


设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f″(η)+f′(η)=1.
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
(1)存在ξ∈(0,1),使得f′(ξ)=1;
(2)存在η∈(-1,1),使得f″(η)+f′(η)=1.
证明:(1)由于f(x)为奇函数,则f(0)=0,由于f(x)在[-1,1]上具有二阶导数,由拉格朗日定理,存在ξ∈(0,1),使得f′(ξ)=f(1)−f(0)1−0=1