来自侯婕的问题
【设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.f(x)在[0,1]上的最小值是-1,试证至少存在一点ξ∈(0,1),使f″(ξ)≥8.】
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.f(x)在[0,1]上的最小值是-1,试证至少存在一点ξ∈(0,1),使f″(ξ)≥8.
1回答
2020-12-2323:02
【设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.f(x)在[0,1]上的最小值是-1,试证至少存在一点ξ∈(0,1),使f″(ξ)≥8.】
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.f(x)在[0,1]上的最小值是-1,试证至少存在一点ξ∈(0,1),使f″(ξ)≥8.
证明:设f(x)在点x0处取得极小值,即f(x0)=-1,则f′(x0)=0
由题意,f(x)在[0,x0]和[x0,1]都满足拉格朗日中值定理的条件
∴分别至少存在点ξ1∈(0,x0)和ξ2∈(x0,1),使得
f(x