来自陈超丽的问题
已知函数f(x)=(1/3)^(ax^2-4x+3),若f(x)有最大值3,求a的值f(x)最大值是3,则应该是ax²-4x+3的最小值是-1,则a=1为什么最小值是-1
已知函数f(x)=(1/3)^(ax^2-4x+3),若f(x)有最大值3,求a的值
f(x)最大值是3,则应该是ax²-4x+3的最小值是-1,则a=1
为什么最小值是-1


已知函数f(x)=(1/3)^(ax^2-4x+3),若f(x)有最大值3,求a的值f(x)最大值是3,则应该是ax²-4x+3的最小值是-1,则a=1为什么最小值是-1
已知函数f(x)=(1/3)^(ax^2-4x+3),若f(x)有最大值3,求a的值
f(x)最大值是3,则应该是ax²-4x+3的最小值是-1,则a=1
为什么最小值是-1
解析:
由题意可知:
(1/3)^(ax^2-4x+3)≤3
即(1/3)^(ax^2-4x+3)≤(1/3)^(-1)
考察指数函数y=(1/3)^x,由于底数1/3