高一数学证明题cosπ/(2n+1)*cos2π/(2n+1-查字典问答网
分类选择

来自陈学德的问题

  高一数学证明题cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数(要有详细过程哈!~谢谢!~)

  高一数学证明题

  cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数

  (要有详细过程哈!~谢谢!~)

1回答
2019-09-1016:33
我要回答
提示:回答问题需要登录哦!
龚清洪

  由2sina*cosa=sin2a

  有sina*cosa=sin2a/2

  是故

  cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)*sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)

  =1/(2^n)*sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)

  下面证明

  sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)

  =sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)

  事实上:

  n为奇数时:

  sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)

  =sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)

  *sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)

  考虑到sina=sin(π-a)

  所以sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+1)π/(2n+1))*sin(π-(n+3)π/(2n+1))*...*sin(π-2nπ/(2n+1))

  =sinnπ/(2n+1)*sin(n-2)π/(2n+1)*...*sin(π/(2n+1))

  因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)

  *sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)

  =sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)

  n为偶数时:

  sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)

  =sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)

  *sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)

  考虑到sina=sin(π-a)

  所以sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+2)π/(2n+1))*sin(π-(n+4)π/(2n+1))*...*sin(π-2nπ/(2n+1))

  =sin(n-1)π/(2n+1)*sin(n-3)π/(2n+1)*...*sin(π/(2n+1))

  因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)

  *sin(n+3)π/(2n+1)*...*sin2nπ/(2n+1)

  =sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)

  于是

  sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)

  =sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)

  因此

  cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数

2019-09-10 16:35:25
大家都在问
最新问答