来自隋鹏飞的问题
已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证明:(1)△ABM≌△CAF;(2)∠AMB=∠DMC.
已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证明:
(1)△ABM≌△CAF;
(2)∠AMB=∠DMC.


已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证明:(1)△ABM≌△CAF;(2)∠AMB=∠DMC.
已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证明:
(1)△ABM≌△CAF;
(2)∠AMB=∠DMC.
证明:(1)∵在△ABC中,∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠F+∠CAF=90°,∠CAF+∠AMB=90°,
∴∠F=∠AMB,
在△ABM和△CAF中,
∠BAM=∠ACF∠AMB=∠FAB=CA