来自麻士东的问题
(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a−1)(1b−1)(1c−1)≥8.
(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a−1)(1b−1)(1c−1)≥8.


(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a−1)(1b−1)(1c−1)≥8.
(1)已知a,b,c为两两不相等的实数,求证:a2+b2+c2>ab+bc+ca;
(2)设a,b,c∈(0,+∞),且a+b+c=1,求证(1a−1)(1b−1)(1c−1)≥8.
证明:(1)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca)
即证(a+b)2+(b+c)2+(a+c)2>0,
因为a,b,c是不全相等的实数,所以(a+b)2>0,(b+c)2>0,(a+c)2>0,
所以(a+b)2+(b+c)2+(a+c)2>0显然成立.
所以a2+b2+c2>ab+bc+ca;
(2)∵a、b、c∈(0,+∞)且a+b+c=1,
∴(1a−1)(1b−1)(1c−1)=b+ca•a+cb•a+bc