来自钱徽的问题
已知:在△ABC内任取一点D,连接AD,BD,点E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求证:△DBE∽△ABC.
已知:在△ABC内任取一点D,连接AD,BD,点E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求证:△DBE∽△ABC.


已知:在△ABC内任取一点D,连接AD,BD,点E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求证:△DBE∽△ABC.
已知:在△ABC内任取一点D,连接AD,BD,点E在△ABC外,∠EBC=∠ABD,∠ECB=∠DAB,求证:△DBE∽△ABC.
证明:∵∠EBC=∠ABD,∠ECB=∠DAB可得,△ABD∽△CBE.
∴BEBD=BCAB