来自贾永峰的问题
已知{an}为等比数列,a1=1,a4=64;数列{bn}的前n项和Sn满足Sn=3n2+n2(1)求{an}和{bn}的通项公式;(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
已知{an}为等比数列,a1=1,a4=64;数列{bn}的前n项和Sn满足Sn=3n2+n2
(1)求{an}和{bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn.


已知{an}为等比数列,a1=1,a4=64;数列{bn}的前n项和Sn满足Sn=3n2+n2(1)求{an}和{bn}的通项公式;(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
已知{an}为等比数列,a1=1,a4=64;数列{bn}的前n项和Sn满足Sn=3n2+n2
(1)求{an}和{bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
(1)设等比数列{an}的公比为q,由a1=1,a4=a1q3,得q=4.∴an=4n-1.∵数列{bn}的前n项和Sn满足Sn=3n2+n2,∴数列{bn}为等差数列,a1=2,a1+a2=7,∴公差d=3.∴bn=2+(n-1)×3=3n-1.(2)由(1)可得:anbn=(3...