来自程汉湘的问题
已知椭圆X^2/a^2+Y^2/b^2=1(a>b>0),圆O:X^2+Y^2=b^2,点A,F分别是椭圆的C的左顶点和左焦点,点P是圆O上的动点,是否存在这样的椭圆C,使得PA/PF是常数?如果存在,求离心率;如果不存在,说明理由.
已知椭圆X^2/a^2+Y^2/b^2=1(a>b>0),圆O:X^2+Y^2=b^2,点A,F分别是椭圆的C的左顶点和左焦点,
点P是圆O上的动点,是否存在这样的椭圆C,使得PA/PF是常数?如果存在,求离心率;如果不存在,说明理由.

