来自邵贝恩的问题
【如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为()A.5B.4C.3D.5】
如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为()
A.5
B.4
C.3
D.
5


【如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为()A.5B.4C.3D.5】
如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为()
A.5
B.4
C.3
D.
5
∵ABCD是正方形,
∴∠DCO=90°,
∵∠POM=45°,
∴∠CDO=45°,
∴CD=CO,
∴BO=BC+CO=BC+CD,
∴BO=2AB,
连接AO,
∵MN=10,
∴AO=5,
在Rt△ABO中,
AB2+BO2=AO2,
AB2+(2AB)2=52,
解得:AB=
5