来自黎惠霖的问题
已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()A.-37B.-29C.-5D.以上都不对
已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()
A.-37
B.-29
C.-5
D.以上都不对


已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()A.-37B.-29C.-5D.以上都不对
已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()
A.-37
B.-29
C.-5
D.以上都不对
∵f′(x)=6x2-12x=6x(x-2),
∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,
∴当x=0时,f(x)=m最大,
∴m=3,从而f(-2)=-37,f(2)=-5.
∴最小值为-37.
故选:A